Please, please, please, settle this question. The discussion has been going on for ages, and anytime someone mentions the words “airplane” or “conveyor belt” everyone starts right back up. Here’s the original problem essentially as it was posed to us: “A plane is standing on a runway that can move (some sort of band conveyer). The plane moves in one direction, while the conveyer moves in the opposite direction. This conveyer has a control system that tracks the plane speed and tunes the speed of the conveyer to be exactly the same (but in the opposite direction). Can the plane take off?”
Best of Chicago voting is live now. Vote for your favorites »
There are some difficulties with the wording of the problem, specifically regarding how we define speed, but the spirit of the situation is clear. The solution is also clear to me (and many others), but a staunch group of unbelievers won’t accept it. My conclusion is that the plane does take off. Planes, whether jet or propeller, work by pulling themselves through the air. The rotation of their tires results from this forward movement, and has no bearing on the behavior of a plane during takeoff. I claim the only difference between a regular plane and one on a conveyor belt is that the conveyor belt plane’s wheels will spin twice as fast during takeoff. Please, Cecil, show us that it’s not only theoretically possible (with frictionless wheels) but it’s actually possible too. –Berj A. Doudian, via e-mail
First the obvious-but-wrong answer. The unwary tend to reason by analogy to a car on a conveyor belt–if the conveyor moves backward at the same rate that the car’s wheels rotate forward, the net result is that the car remains stationary. An aircraft in the same situation, they figure, would stay planted on the ground, since there’d be no air rushing over the wings to give it lift. But of course cars and planes don’t work the same way. A car’s wheels are its means of propulsion–they push the road backward (relatively speaking), and the car moves forward. In contrast, a plane’s wheels aren’t motorized; their purpose is to reduce friction during takeoff (and increase it, by braking, when landing). What gets a plane moving are its propellers or jet turbines, which shove the air backward and thereby impel the plane forward. What the wheels, conveyor belt, etc, are up to is largely irrelevant. Let me repeat: Once the pilot fires up the engines, the plane moves forward at pretty much the usual speed relative to the ground–and more importantly to the air–regardless of how fast the conveyor belt is moving backward. This generates lift on the wings, and the plane takes off. All the conveyor belt does is, as you correctly conclude, make the plane’s wheels spin madly.